题目中心
1.大样本情况下,总体比例检验的统计量为。 (  ) 2.大样本情况下,总体均值检验的统计量可能为(  )。 3.小样本情况下,总体均值检验的统计量可能为(  )。 4.设总体为正态总体,总体方差未知,在小样本条件下,对总体均值进行如下的假设检验H0:μ=μ0,(μ0为已知数);Hl:μ≠μ0,α=0.1。则下列说法正确的有(  )。 5.为了考察某种类型的电子元件的使用寿命情况,假定该电子元件使用寿命的分布是正态分布。而且根据历史记录得知该分布的参数为:平均使用寿命μ0为100小时,标准差σ为10小时。现在随机抽取100个该类型的电子元件,测得平均寿命为102小时,给定显著性水平α=0.05,为了判断该电子元件的使用寿命是否有明显的提高,下列说法正确的有(  )。 6.设总体服从正态分布,总体方差未知,现抽取一容量为15的样本,拟对总体均值进行假设检验,检验统计量是(  )。 7.在正态总体均值的假设检验中,在给定显著性水平α的条件下双边检验拒绝域的临界值与单边检验拒绝域的临界值之间的关系为(  )。 8.小样本情况下,当总体服从正态分布,总体方差已知时,总体均值检验的统计量为(  )。 9.若假设形式为H0:μ=μ0,H1:μ≠μ0,当随机抽取一个样本,其均值=μ0,则(  )。 10.已知总体方差,显著性水平α=0.05,检验的假设为:H0:μ≤μ0,H1:μ>μ0,则检验的拒绝域应为(  )。 11.从一批零件中抽出100个测量其直径,测得平均直径为5.2cm,标准差为1.6cm,想知道这批零件的直径是否服从标准直径5cm,因此采用t检验法,那么在显著性水平α下,接受域为(  )。 12.用Z检验法,作双边统计假设检验时,如果是拒绝了H0,其判定的依据必是(  )。 13.小样本情况下,当总体服从正态分布,总体方差未知时,总体均值检验的统计量为(  )。 14. 15.随机抽取一个n=100的样本,计算得到=60,s=15,要检验假设H0:μ=65,H1:μ≠65,检验的统计量为(  )。 16.机床厂某日从两台机器所加工的同一种零件中,分别抽取两个样本,检验两台机床的加工精度是否相同,则提出假设(  )。 17.从某个城市中随机抽取15个家庭组成一个随机样本,得到样本均值为84.50元,标准差为14.50元。在α=0.05的显著性水平下,检验假设H0:μ =90,H1:μ ≠90,得到的结论是(  )。 18.在大样本时,总体比例检验统计量用z统计量,其基本形式为(  )。 19.大样本情况下,当总体方差未知时,总体均值检验的统计量为(  )。 20.一种机床加工的零件尺寸绝对平均误差允许值为1.35ram。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件牛随机抽取50个进行检验,得到50个零件尺寸的绝对误差数据,其平均差为1.2152,标准差为0.365749。利用这些样本数据,在d=0.05水平下,要检验新机床加工的零件尺……
×
微信扫一扫
快速购买